# Federate grafana with apache2 + mod_auth_mellon to have SSO with SAML

Trying to implement SSO ( Single SIgn On ) with Okta as IdP and I followed the next steps:

Install apache2 + mod_auth_mellon
Install grafana on the same host
Enable required apache2 modules like headers, authzn_core &
authz_user and so on…
Configure Grafana.xml
MellonEndpointPath /grafana
</Location>
MellonPostDirectory "/var/cache/mod_auth_mellon_postdata"
ProxyPass /grafana http://127.

all &&!all &&!

# Graphite - Grafana - collectd / Missing data in graphs

I installed Grafana & Graphite, and use bobrik/collectd-elasticsearch to monitor Elasticsearch performance.every result I got is with "holes" in the data, like the attached image.

# .then of Promise.all result never executes

stringify(item) + " *((*&*&*&*&^&*&*&*(&*(&*&*(&(&(&*( :::" + x);
/*if(!

# A generalization of Chebyshev polynomials

09216 \\
- & - & - & - & - & 0.09216 \\
- & - & - & - & - & - & 0.

# Mean of a vector

Then $$\mu_n\to(2,2,2,2,2,102,102,102,102,102).The exact rate of convergence will be determined by the second-largest singular value of the matrix$$M =
\begin{bmatrix}
\tfrac13 & \tfrac13 & \tfrac13 & & & \\
\tfrac13 & \tfrac13 & \tfrac13 & & & \\
\tfrac13 & \tfrac13 & \tfrac13 & & & \\
& & & 1 & & \\
& & & & 1 & \\
& & & & & \ddots
\end{bmatrix}
\begin{bmatrix}
1 & & & & & \\
& \tfrac13 & \tfrac13 & \tfrac13 & & \\
& \tfrac13 & \tfrac13 & \tfrac13 & & \\
& \tfrac13 & \tfrac13 & \tfrac13 & & \\
& & & & 1 & \\
& & & & & \ddots
\end{bmatrix}
\begin{bmatrix}
1 & & & & & \\
& 1 & & & & \\
& & \tfrac13 & \tfrac13 & \tfrac13 & \\
& & \tfrac13 & \tfrac13 & \tfrac13 & \\
& & \tfrac13 & \tfrac13 & \tfrac13 & \\
& & & & & \ddots
\end{bmatrix}
\cdots$$but I don't know how to compute that. # Iterated semi-direct products 5ex\rlap{\scriptstyle#1}}$$
\begin{array}{c}
& & 1 & & 1 & & \\
& & \da{} & & \da{} & & \\
& & C & \ra{=} & C\\
& & \da{} & & \da{} & & \\
1 & \ra{} & A & \ra{} & G & \ra{} & B & \ra{} & 1 \\
& & \da{} & & \da{\pi} & & \da{=} \\
1 & \ra{} & D & \ra{} & E & \ra{} & B & \ra{} & 1 \\
& & \da{} & & \da{} & & \\
& & 1 & & 1 & &
\end{array}
$$in which all rows and columns are exact.Now A/[C,D] is the direct product C/[C,D] \times D[C,D]/[C,D]. # Verifying the correctness of a Sudoku solution We are thus looking for a solution of the following grid:$$\begin{array}{|ccc|ccc|ccc|ccc|ccc|}
\hline
1&&&2&&&&&&&&&&&&\\
\strut&&&&&&&&&&&&&&&\\
\strut&&&&&&&&&&&&&&&\\
\hline
&&&1&&&2&&&&&&&&&\\
&&&&&&&&&&&&&&\cdots&\\
&&&&&&&&\ddots&&&&&&&\\
\hline
2&&&&&&&&&1&&&&&&\\
\strut&&&&&&&&&&&&&&&\\
\strut&&&&&&&&&&&&&&&\\
\hline
\strut&&&&&&&&&&&&&&&\\
\strut&&&&\vdots&&&&&&&&&&&\\
\strut&&&&&&&&&&&&&&&\\
\hline
\end{array}$$where the upper part is a q'\times q' subgrid, q'=q/2.S is not included in the complement of a Sudoku permutation of one of the following sets: a) \{r_1,r_2\} b) \{r_1,c_1,b_1\} c) \{b_1,b_2,b_4,b_5\} d) \{r_1,r_4,b_1,b_4\} e) \{r_1,c_1,b_2,b_4,b_5\} f) \{b_2,b_3,b_4,b_6,b_7,b_8\} g) \{r_1,r_4,b_1,b_5,b_7,b_8\} h) \{r_1,c_1,b_3,b_5,b_6,b_7,b_8\} Maximal incomplete sets http://math. # Modify Odoo Discussions (mail) model &amp;&amp; (message.channel') &amp;&amp; options. # why do these characters belong to the first group in this JS regex match? :Dokumentation&&&KKS-Nummer&&&Beschreibung&&&Seite)(&&&([^(&&&)]+)&&&([^(&&&)]+)&&&(\d+))+ The test string: %5B"Deckblatt: Anlagendokumentation&&&Produktdaten&&&KKS-Nummer&&&Hersteller&&&Typ&&&Artikelnummer&&&MA-KF1&&&Beckhoff&&&EK1100&&&BECK%2EEK1100&&&MA-KF11&&&Beckhoff&&&EK1100&&&BECK%2EEK1100&&&MA-KF12&&&Beckhoff&&&EK1100&&&BECK%2EEK1100&&&MA-KF13&&&Beckhoff&&&EK1100&&&BECK%2EEK1100&&&MA-KF14&&&Beckhoff&&&EK1100&&&BECK%2EEK1100&&&MA-KF15&&&Beckhoff&&&EK1100&&&BECK%2EEK1100&&&MA-KF16&&&Beckhoff&&&EK1100&&&BECK%2EEK1100&&&MA-KF17&&&Beckhoff&&&EK1100&&&BECK%2EEK1100&&&MA-KF18&&&Beckhoff&&&EK1100&&&BECK%2EEK1100&&&MA-KF19&&&Beckhoff&&&EK1100&&&BECK%2EEK1100&&&MA-KF20&&&Beckhoff&&&EK1100&&&BECK%2EEK1100&&&MA-KF21&&&Beckhoff&&&EK1100&&&BECK%2EEK1100&&&MA-KF22&&&Beckhoff&&&EK1100&&&BECK%2EEK1100&&&MA-KF23&&&Beckhoff&&&EK1100&&&BECK%2EEK1100&&&MA-KF24&&&Beckhoff&&&EK1100&&&BECK%2EEK1100&&&MA-KF25&&&Beckhoff&&&EK1100&&&BECK%2EEK1100&&&MA-KF26&&&Beckhoff&&&EK1100&&&BECK%2EEK1100&&&MA-KF27&&&Beckhoff&&&EK1100&&&BECK%2EEK1100&&&MA-KF28&&&Beckhoff&&&EK1100&&&BECK%2EEK1100&&&MA-KF29&&&Beckhoff&&&EK1100&&&BECK%2EEK1100&&&MA-KF30&&&Beckhoff&&&EK1100&&&BECK%2EEK1100&&&MA-KF31&&&Beckhoff&&&EK1100&&&BECK%2EEK1100&&&MA-KF32&&&Beckhoff&&&EK1100&&&BECK%2EEK1100&&&MA-KF33&&&Beckhoff&&&EK1100&&&BECK%2EEK1100&&&MA-KF34&&&Beckhoff&&&EK1100&&&BECK%2EEK1100&&&MA-KF35&&&Beckhoff&&&EK1100&&&BECK%2EEK1100&&&MA-KF36&&&Beckhoff&&&EK1100&&&BECK%2EEK1100&&&MA-KF37&&&Beckhoff&&&EK1100&&&BECK%2EEK1100&&&MA-KF38&&&Beckhoff&&&EK1100&&&BECK%2EEK1100&&&MA-KF39&&&Beckhoff&&&EK1100&&&BECK%2EEK1100&&&MA-KF40&&&Beckhoff&&&EK1100&&&BECK%2EEK1100&&&MA-KF41&&&Beckhoff&&&EK1100&&&BECK%2EEK1100&&&Dokumentation&&&KKS-Nummer&&&Beschreibung&&&Seite&&&all&&&Vorwort&&&6&&&all&&&Produktübersicht&&&7&&&all&&&Grundlagen&&&8&&&all&&&Montage und Verdrahtung&&&9&&&all&&&Inbetriebnahme%2FAnwendungshinweise&&&10&&&all&&&Fehlerbehandlung und Diagnose&&&11&&&all&&&Anhang 1&&&12&&&all&&&Anhang 2&&&13&&&all&&&Anhang 3&&&14&&&all&&&Anhang 4&&&15&&&all&&&Anhang 5&&&16&&&all&&&Anhang 6&&&17&&&all&&&Anhang 7&&&18&&&all&&&Anhang 8&&&19&&&all&&&Anhang 9&&&20&&&all&&&Anhang 10&&&21&&&all&&&Anhang 11&&&22&&&all&&&Anhang 12&&&23&&&all&&&Anhang 13&&&24&&&all&&&Anhang 14&&&25&&&all&&&Anhang 15&&&26&&&all&&&Anhang 16&&&27&&&all&&&Anhang 17&&&28&&&all&&&Anhang 18&&&29&&&all&&&Anhang 19&&&30&&&all&&&Anhang 20&&&31&&&all&&&Anhang 21&&&32&&&all&&&Anhang 22&&&33&&&all&&&Anhang 23&&&34&&&all&&&Anhang 24&&&35&&&all&&&Anhang 25&&&36&&&all&&&Anhang 26&&&37&&&all&&&Anhang 27&&&38&&&all&&&Anhang 28&&&39&&&all&&&Anhang 29&&&40&&&all&&&Anhang 30&&&41&&&all&&&Anhang 31&&&42&&&all&&&Anhang 32&&&43&&&all&&&Anhang 33&&&44&&&all&&&Anhang 34&&&45&&&all&&&Anhang 35&&&46&&&all&&&Anhang 36&&&47&&&all&&&Anhang 37&&&48&&&all&&&Anhang 38&&&49&&&all&&&Anhang 39&&&50&&&all&&&Anhang 40&&&51&&&all&&&Anhang 41&&&52&&&all&&&Anhang 42&&&53"%5D The regex I wrote should get a first group, which appears after /Artikelnummer/ and before /Dokumentation&&&/ (etc), as well as a second group, which is what I'm having trouble with: It should consist of repetitions of this pattern: (&&&([^(&&&)]+)&&&([^(&&&)]+)&&&(\d+)+ By my reckoning, that should capture the entire substring: &&&all&&&Vorwort&&&6&&&all&&&Produktübersicht&&&7&&&all&&&Grundlagen&&&8&&&all&&&Montage und Verdrahtung&&&9&&&all&&&Inbetriebnahme%2FAnwendungshinweise&&&10&&&all&&&Fehlerbehandlung und Diagnose&&&11&&&all&&&Anhang 1&&&12&&&all&&&Anhang 2&&&13&&&all&&&Anhang 3&&&14&&&all&&&Anhang 4&&&15&&&all&&&Anhang 5&&&16&&&all&&&Anhang 6&&&17&&&all&&&Anhang 7&&&18&&&all&&&Anhang 8&&&19&&&all&&&Anhang 9&&&20&&&all&&&Anhang 10&&&21&&&all&&&Anhang 11&&&22&&&all&&&Anhang 12&&&23&&&all&&&Anhang 13&&&24&&&all&&&Anhang 14&&&25&&&all&&&Anhang 15&&&26&&&all&&&Anhang 16&&&27&&&all&&&Anhang 17&&&28&&&all&&&Anhang 18&&&29&&&all&&&Anhang 19&&&30&&&all&&&Anhang 20&&&31&&&all&&&Anhang 21&&&32&&&all&&&Anhang 22&&&33&&&all&&&Anhang 23&&&34&&&all&&&Anhang 24&&&35&&&all&&&Anhang 25&&&36&&&all&&&Anhang 26&&&37&&&all&&&Anhang 27&&&38&&&all&&&Anhang 28&&&39&&&all&&&Anhang 29&&&40&&&all&&&Anhang 30&&&41&&&all&&&Anhang 31&&&42&&&all&&&Anhang 32&&&43&&&all&&&Anhang 33&&&44&&&all&&&Anhang 34&&&45&&&all&&&Anhang 35&&&46&&&all&&&Anhang 36&&&47&&&all&&&Anhang 37&&&48&&&all&&&Anhang 38&&&49&&&all&&&Anhang 39&&&50&&&all&&&Anhang 40&&&51&&&all&&&Anhang 41&&&52&&&all&&&Anhang 42&&&53 But, for some reason, the only string in group 2 is: &&&Anhang 42&&&53 Why is this happening?You get &&&all&&&Anhang 42&&&53 in Group 2 because the (pattern)+ is a repeated capturing group that stores only the value captured at the last iteration. # Simplicial “universal extensions”, the hammock localization, and Ext$$

A morphism of $n$-extensions of $Y$ by $X$ is defined to be a hammock

$$\begin{matrix} &&A_1&\to&A_2&\to&A_3&\to&\ldots&\to &A_{n-2}&\to &A_{n-1}&\to& A_{n}&&\\ &\nearrow&\downarrow&&\downarrow&&\downarrow&&&&\downarrow&&\downarrow&&\downarrow&\searrow&\\ X&&\downarrow&&\downarrow&&\downarrow&&&&\downarrow&&\downarrow&&\downarrow&&Y\\ &\searrow&\downarrow&&\downarrow&&\downarrow&&&&\downarrow&&\downarrow&&\downarrow&\nearrow&\\ &&B_1&\to&B_2&\to&B_3&\to&\ldots&\to &B_{n-2}&\to &B_{n-1}&\to& B_{n}&&\end{matrix}$$

This detetermines a category $n\operatorname{-ext}(Y,X)$.Questions:

Why can we get $\pi_1$ of the function complex by looking at maps into $N[1]$?

# formation and interpretation of a dual LP

The coffee company makes $p_{i,j}$ dollars for each kilogram it produces at farm $i$ and ships to restaurant $j$.$\begin{array}{l*{12}{r}lr} \mbox{Maximize} & p_{1,1}x_{1,1} & + & p_{1,2}x_{1,2} & + & p_{1,3}x_{1,3} & + & p_{2,1}x_{2,1} & + & p_{2,2}x_{2,2} & + & p_{2,3}x_{2,3} \\ \mbox{Subject to} & x_{1,1} & + & x_{1,2} & + & x_{1,3} & ~ & ~ & ~ & ~ & ~ & ~ &\leq & s_1 \\ ~ & ~ & ~ & ~ & ~ & ~ & ~ & x_{2,1} & + & x_{2,2} & + & x_{2,3} & \leq & s_2 \\ ~ & x_{1,1} & ~ & ~ & ~ & ~ & + & x_{2,1} & ~ & ~ & ~ & ~ & \geq & d_1 \\ ~ & ~ & ~ & x_{1,2} & ~ & ~ & ~ & ~ & + & x_{2,2} & ~ & ~ & \geq & d_2 \\ ~ & ~ & ~ & ~ & ~ & x_{1,3} & ~ & ~ & ~ & ~ & + & x_{2,3} & \geq & d_3 \\ &&&&&&&&&&&x_{i,j} & \geq & 0 \end{array}$

Here we can think of each $x_{i,j}$ as the amount (in kg) that is shipped from farm $i$ to restaurant $j$.

# Finding the Smallest Convex Hull of an Adjacency Matrix

How do I know if the convex hull is the smallest possible without using brute force?Here is an example:

We have the 9X9 adjacency matrix,

\begin{Vmatrix}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
\end{Vmatrix}

which with dots is:
\begin{Vmatrix}
& & & & \cdot & & & & \\
& & & & & \cdot & & & \\
\cdot & & & & & & & & \\
& & & & & \cdot & & & \\
& & & & & \cdot & & & \\
& & & & & & & & &\\
\cdot & & & & & & & & \\
\cdot & & & & & & & & \\
& & & \cdot & & & & & \\
\end{Vmatrix}

then rearranged is:
\begin{Vmatrix}
& \cdot & & & & & & & \\
& & \cdot & & & & & & \\
\cdot & & & & & & & & \\
& & \cdot & & & & & & \\
& & \cdot & & & & & & \\
\cdot & & & & & & & & \\
\cdot & & & & & & & & \\
& & & \cdot & & & & & \\
& & & & & & & & \\
\end{Vmatrix}

with the convex hull of the latter clearly having the smaller area.

# How many numbers are there for a $16*16$ matrix

So our situation is
$$\begin{pmatrix} 1 & 1 & * & *\\ 1 & 1 & * & *\\ * & * & * & *\\ * & * & * & * \end{pmatrix}.The situation is$$
\begin{pmatrix}
1 & 1 & 0 & 0\\
1 & 1 & 0 & 0\\
* & * & * & *\\
* & * & * & *
\end{pmatrix}.

# How do you calculate the expected value of geometric distribution without diffrentiation?

Is there any way I can calculate the expected value of geometric distribution without diffrentiation?)
$$\begin{array}{cccccccccccccccccccccccc} & 0 & & 1 & & 2 & & 3 & & 4 & & 5 & & 6 \\ \hline & & & p^1 & + & 2p^2 & + & 3p^3 & + & 4p^4 & + & 5p^5 & + & 6p^6 & + & \cdots & {} \\[12pt] = & & & p^1 & + & p^2 & + & p^3 & + & p^4 & + & p^5 & + & p^6 & + & \cdots \\ & & & & + & p^2 & + & p^3 & + & p^4 & + & p^5 & + & p^6 & + & \cdots \\ & & & & & & + & p^3 & + & p^4 & + & p^5 & + & p^6 & + & \cdots \\ & & & & & & & & + & p^4 & + & p^5 & + & p^6 & + & \cdots \\ & & & & & & & & & & + & p^5 & + & p^6 & + & \cdots \\ & & & & & & & & & & & & + & p^6 & + & \cdots \\ & & & & & & & & & & & & & & + & \cdots \\ & & & & & & & & & & & & & & \vdots \end{array}$$
First sum each (horizontal) row.

# What wrong with the proof for extreme rays?

Let $C=\{y\in \mathbb{R}^8: y A \geq 0\}$ be a polyhedral cone, where

$A=\begin{pmatrix} -1 & -1 & & & & & & \\ & & -1 & -1 & & & & \\ & & & &-1 & -1 & & \\ & & & & & & -1 & -1 \\ 1 & && & 1 && & &1&& \\ &1 && & &1 & & &&1&\\ & &1 & & & &1 & & &&1&\\ & & &1 & && &1 &&&&1 \end{pmatrix}$

Since $yA=0$ implies $y=0$, $C$ is pointed.Hence $C$ is finitely generated by extreme rays, or \$C=\{x: x=\lambda_1 r_1+.

# Extrapolate a sum using partial sums at powers of two

0000000000 & & & & & & & \\
2 &1.5000000000 & & & & & & \\
4 &1.