Results for query "Error in integer(max(oldnodes))"

How does Java handle alpha channel?

My understanding is that an RGB value with alpha value example could be this 0xffhexcode.However, what I cannot understand is how 0xff0000ff, a solid blue with max alpha value, is an integer value greater than Integer.

Spring Boot | targeting an unmapped class error

BeanCreationException: Error creating bean with name 'entityManagerFactory' defined in class path resource [org/springframework/boot/autoconfigure/orm/jpa/HibernateJpaAutoConfiguration.IDENTITY)
@Basic(optional = false)
@Column(name = "id_modulo")
private Integer idModulo;
@Size(max = 75)
@Column(name = "nombre")
private String nombre;
@Size(max = 45)
@Column(name = "ubicacion")
private String ubicacion;
@Size(max = 45)
@Column(name = "servidor")
private String servidor;
@Size(max = 10)
@Column(name = "version")
private String version;
@OneToMany(cascade = CascadeType.

Postgres: Can an integer column be null?

I made an integer column that is null by default but when I put empty double quotes "" it gives this error:

ERROR: invalid input syntax for integer: ""

Does the integer column have to be 0 then?An integer column can be null, but '' is an empty string not null.

Java double colon operator from compile time to byte code generation?

In this question the author uses the following example:

public final OptionalInt max() {
return reduce(Math::max); //this is the gotcha line

So in this case it looks as if max() is a proxy for Math.However there are no arguments passed to max, so does java 8 compile this to something like (Pseudo code):

public final OptionalInt max(Integer a, Integer b) {
//If neither a or b are null
return new OptionalInt.

SQLite auto increase a non-primary key

I have a table which has one primary key integer:


That zid integer field that must be incremented from the previous one found in the database.I could do something like that:


However, the value of that integer field will, at some point, reset to zero.

Round Off Error Analysis

$x$ is a real number.In analysing the round off error for the floating point computation $fl(x^n)$ of $x^n$ for some positive integer $n$, I'm able to bound the error as:

$x^n(1 + d_{min})^{n-1} \le fl(x^n) \le x^n(1 + d_{max})^{n-1}$ where $d_{min} \lt d_{max}$

Intuitively, I can see that there must exist $d_{min} \le \alpha \le d_{max}$ such that $fl(x^n) = x^n(1+ \alpha)^{n-1}$

How do you formally prove that?

find min max in an array of integer, performance issue

private static Pair classicMinMax(int[] elements) {
int min = MAX_VALUE;
int max = MIN_VALUE;

for (int i = 0; i < elements.length; i++) {
int e = elements[i];
if (e < min) min = e;
if (e > max) max = e;
return new Pair(min, max);


private static Pair divideAndConquer(int[] elements) {
int min = MAX_VALUE;
int max = MIN_VALUE;

for (int i = 0; i < elements.